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A recent microscopic model of the pseudogap state, based on the resonating valence bond �RVB� spin liquid,
has provided a simple ansatz for the electronic self-energy in which a gap forms on the antiferromagnetic
Brillouin zone as the limit of a Mott insulator is approached in the underdoped regime. Here, the ansatz is
employed to calculate the electronic specific heat when a superconducting gap is also included. We find
qualitative agreement with all experimental observations in the underdoped regime of the cuprates. We explore
the relationship of the theory to two other purely phenomenological approaches, the nodal liquid and the Fermi
arc model, and provide justification for their use on experimental data in light of this microscopic RVB theory.
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Simplified models, such as BCS theory, which ignore
much of the complicated details associated with actual met-
als, have had an enormous impact on our understanding of
the superconducting state. A generalization of BCS to in-
clude the d-wave symmetry of the superconducting gap in
the cuprates has taken us a long way in understanding the
overdoped and optimally doped part of their phase diagram.
However, it has failed so far to provide even a first qualita-
tive picture of the observed properties as the Mott transition
is approached in the underdoped regime. Some additional
essential element is still missing, which has been widely rec-
ognized as associated with the opening of a pseudogap, al-
though the exact nature of the phenomenon remains un-
known. Recently, Yang, Rice, and Zhang1 �YRZ� provided a
simple model for the self-energy in the pseudogap phase
from which the coherent part of the electronic Green’s func-
tion can be constructed. The work is based on results for a
resonating valence bond spin liquid and contains a gap which
is formed on the antiferromagnetic Brillouin zone �AFBZ� as
the doping is reduced and the transition to a correlation-
induced Mott insulating state is approached from the metallic
side. Since its appearance in 2006, the model has had con-
siderable success in understanding some aspects of Raman2

and optical properties3 of the underdoped cuprates and has
also been applied to angle-resolved photoemission �ARPES�
data.4

In view of these developments, it is very important to test
the YRZ model on other data. In this Rapid Communication,
we consider the electronic specific heat, which has long been
known to show anomalous properties5–7 not describable
within simple BCS theory. Lacking the existence of a well-
developed and accepted microscopic theoretical framework,
Loram et al.5–7 included a depression of the electronic den-
sity of states �DOS� near the Fermi energy to analyze their
early specific-heat work. More recently, a similar analysis
applied to optical data8,9 has also yielded new insights, in-
cluding clarification of temperature-dependent Fermi arcs.
More sophisticated, but still purely phenomenological, ap-
proaches to the pseudogap phase have appeared, including
the idea of a nodal liquid10 and of temperature-dependent
Fermi arcs.10–14 In these models, the pseudogap exhibits
d-wave symmetry and forms on the Fermi surface. At high
temperatures only the antinodal region is gapped while the

remaining ungapped arc length about the nodal direction is
proportional to temperature. The limit of a nodal liquid is
when the pseudogap is taken to form over the entire Fermi
surface.10,14 In comparison to these models, the YRZ ap-
proach is profoundly different in that the pseudogap forms
on the AFBZ. After presenting our results, we will provide
an analysis of how YRZ relates to both the nodal liquid and
Fermi arc model.

There are many other theoretical approaches to the
pseudogap phase, for example, preformed pairs, existing be-
low an onset temperature, T�, with phase coherence taking
hold only at the lower superconducting Tc. These preformed
pairs arise either from a homogeneous state15,16 or from in-
cluding inhomogeneities on the nanoscale.17 There are also
extensions of BCS theory which include the formation of
finite momentum pairs that persist above Tc.

18 Another class
of theories involves competing orders, such as d-density
waves,19 which set in at T� and can coexist with supercon-
ducting order below Tc.

In the YRZ model, both the superconducting gap, �sc, and
the pseudogap, �pg, have a d-wave k-space dependence de-

scribed by: �sc=
�sc

0

2 �cos kxa−cos kya� and �pg=
�pg

0

2 �cos kxa
−cos kya�, with a the lattice constant. For a doping x, the
YRZ model is described by a propagator,

G�k,�,x� = �
�=�

Wk
�/�� − Ek

� − �sc
2 /�� + Ek

��� , �1�

where Ek
�=

�k−�k
0

2 �Ek, Ek=��̃k
2+�pg

2 , �̃k= ��k+�k
0� /2, and

Wk
�=

gt�x�
2 �1�

�̃k

Ek
�, where gt�x� weights the coherent part.4

The energy dispersion �k=−2t�cos kxa+cos kya�
−4t� cos kxa cos kya−2t��cos 2kxa+cos 2kya�−�p includes
hopping out to third nearest neighbor, while �k

0

=−2t�cos kxa+cos kya� is the first nearest-neighbor term,
which determines the placement of the pseudogap off the
Fermi surface, coinciding with the AFBZ boundary. These
energy dispersions contain doping-dependent coefficients:
t�x�=gt�x�t0+3gs�x�J� /8, t��x�=gt�x�t0�, and t��x�=gt�x�t0�,
where gt�x�=2x / �1+x� and gs�x�=4 / �1+x�2 are the
Gutzwiller factors. The dispersion here uses �p as an effec-
tive chemical potential or Fermi level at T=0, determined by
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the Luttinger sum rule. Values of other parameters in the
dispersion were taken from Ref. 1 to be: t� / t0=−0.3, t� / t0
=0.2, J / t0=1 /3, and �=0.338; while the optimal supercon-
ducting gap �sc

0 was chosen to give an effective optimal Tc
around 90 K for a ratio of 2�sc

0 �T=0� /kBTc=6,20 for units of
t0=0.1 eV, where �sc

0 �T� is the gap amplitude given in BCS
theory at temperature, T.

From the YRZ propagator of Eq. �1�, one can extract the
YRZ spectral function and see that there are four energy
branches, given by the energies, �Esc

� , where Esc
�

=��Ek
��2+�sc

2 . One can straightforwardly calculate the spe-
cific heat, C�T�, from the entropy, S, given at temperature, T,
by the standard formula summed over the four energy
branches, which reduces to

S = − 2kB �
�=�

�
k

Wk
��f�Esc

� �ln�f�Esc
� �� + f�− Esc

� �ln�f�− Esc
� ��� ,

�2�

where f is the Fermi function and kB, the Boltzmann con-
stant. The temperature dependence enters through both f and
the temperature-dependent superconducting gap.

The electronic specific-heat gamma, denoted by 	�T�
=C�T� /T, is a constant, 	�T�= 2
2

3 kB
2 N�0�, in the noninteract-

ing case, with N�0�, the electronic density of states at the
Fermi level. 	�T� is presented in Fig. 1, for several doping
values, normalized by the constant 	0= 2
2

3 kB
2 N�0,x=0.16�.

These results are based on the generic phase diagram, illus-
trated by Fig. 2�a�, which is slightly modified from that pre-
viously used by YRZ, with optimal doping now at x=0.16.
This is more relevant for comparison with the specific-heat
data of Loram et al.5–7 Other phase diagrams based on the
analysis of a large database have also appeared in the
literature,21,22 in which the pseudogap line ends near the up-
per edge of the superconducting dome, rather than at x=0.2.
Since, in this work, we are only interested in making a quali-
tative comparison with experiment, we have made no at-
tempt to alter other basic parameters of the pseudogap state
introduced in the original paper of YRZ �Ref. 1� in order to
improve quantitative agreement with experimental data.

Comparison of Fig. 1�a� with the experimental results of
Loram et al. �Ref. 5 and Fig. 4, for example� shows that our
theoretical results capture all essential qualitative features

observed. First, as one proceeds toward the underdoped re-
gime, there is a significant decrease in 	�T�, as Tc is ap-
proached from above. This reflects an effective decrease in
the DOS around the Fermi energy in the normal
pseudogapped state. Second, the jump at Tc is greatly re-
duced with increased pseudogap. In Fig. 1�b�, we summarize
the doping dependence of the normalized jump, �C /	�Tc�Tc,
as well as the normalized condensation energy, �U /�Un at
T=0, derived from our entropy calculations. Recall that the
internal energy, U, is related to the specific heat by dU /dT
=C�T� and ultimately to the entropy. The condensation en-
ergy �U is defined as the difference between U in the super-
conducting state, and its value in the normal state at T=0.
This is given by �U=	0

Tc�Snormal−Ssc�dT. �Un is the conden-
sation energy when the pseudogap is set to zero in both the
normal and superconducting states.

Both normalized quantities, the jump and the condensa-
tion energy, are seen to drop precipitously with decreasing x
due to the increase in pseudogap, which is not part of any
pure BCS formulation, in which both quantities would be
constant for all doping. Our findings agree qualitatively with
the data of Loram et al.5–7 It is clear that the model of YRZ
has captured an additional essential element of the physics of
the underdoped cuprates not present in standard BCS mod-
els. Note that our values of �C /	�Tc�Tc are larger than ex-
periments indicate and that this is mainly due to our use of a
large gap ratio of 6, on the order of that indicated by scan-
ning tunnel microscope �STM�.20 However, a smaller value
would give better quantitative agreement, indicating that the
STM data may not reflect the bulk.

Next, we make connection with the nodal liquid and the
Fermi arc approaches. For both cases, we assume that the
pseudogap is located on the usual large Fermi surface
�shown as the solid black curve in Fig. 2�b��. This corre-
sponds to replacing the AFBZ energy �k

0 of the YRZ model
by the energy �k. In this limit, the expression of Eq. �2�
reduces to the standard BCS expression, with the square of
the superconducting gap replaced by the sum of the square of
superconducting and pseudogap. For the Fermi arc model we
apply an additional constraint that the pseudogap is nonzero
only in an arc located around the antinodal direction such
that
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FIG. 1. �Color online� �a� Plot of 	 /	0 vs T / t0 for the YRZ
model with x=0.16, 0.12, and 0.09. �b� Plot of normalized jump,
�C /Cn=�C /	�Tc�Tc, and normalized internal energy, �U /�Un as
functions of doping, x.
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FIG. 2. �Color online� �a� The phase diagram via the magnitudes
of the gaps �sc

0 �x� / t0=0.24�1−82.6�x−0.16�2� and �pg
0 �x� / t0

=0.6�1−x /0.2�. Also, the values of the critical angles, �c
ARC and

�c
YRZ vs x. �b� One quadrant in k space identifying the critical angles

where pseudogap exists. The ellipse is a Luttinger pocket from the
YRZ theory for x=0.05.
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�pg
ARC�k� = 


�pg
0

2
�cos kxa − cos kya� , �� � �c

ARC�

�pg
0

2
�cos kxa − cos kya� , �� 



2 − �c

ARC� �
�3�

and �pg
ARC=0, otherwise. The angle �=arctan��
−ky� / �


−kx�� is shown in Fig. 2�b�. For our purposes, �c
ARC is a

single fitting parameter, adjusted to give 	n�T=0� �n is for
the normal pseudogapped state� equal to that of the YRZ
model at the same doping. Additionally, we ignore any tem-
perature dependence of the pseudogap magnitude below Tc
as is suggested by Refs. 12 and 13 wherein they find that
Raman data shows that there is little modification to the
pseudogap below Tc. We further ignore complications of the
disappearance of the pseudogap at some, relatively high,
temperature T� which is known to cause large specific-heat
anomalies at T�, which are not observed in experiment. In
Fig. 2�a�, the open red squares are the values of �c

ARC ob-
tained from the fit to the specific heat using the construction
of Fig. 2�b�. In the YRZ model, the Luttinger pockets also
form an ungapped region analogous to the Fermi arc model
and it will be this region which is responsible for the specific
heat. Consequently, for YRZ, we define �c

YRZ as the angle
from �
 ,
� to the edge of the Luttinger pocket shown in Fig.
2�b� and plot this in Fig. 2�a� as a function of doping in
comparison with �ARC. The arc model fits consistently show
�c

ARC��c
YRZ. This corresponds to the additional states �albeit

with less quasiparticle weight3,4� which are located along the
AFBZ boundary in the YRZ model, which are absent in the
arc model. One might imagine unravelling the Luttinger
pocket onto the Fermi surface of the arc model for a concep-
tual picture of this comparison. Thus, we expect the arc
model to capture much of the same features as the YRZ
model for the specific heat. This contrasts to the nodal liquid
case, which has the gap over the entire Fermi surface and no
fitting parameters.

In the top two frames of Fig. 3, we compare supercon-
ducting �red dashed curve� and normal pseudogap �solid
black curve� results for 	�T� in the case x=0.13. Frame �a� is
for YRZ, and frame �b� is for the nodal liquid. The shaded
areas illustrate the entropy difference between these two
states. The entropy readjustment is less for the nodal liquid
and consequently the specific-heat jump at T=Tc is reduced.
These differences arise because the density of states at the
Fermi surface, N�0�, is finite in the normal pseudogap state
of the YRZ model while it is zero in the nodal liquid because
the pseudogap exists over the entire Fermi surface, and thus,
	n�T→0�→0 �n is for the normal pseudogapped state�. A
further comparison of these two cases is presented in Figs.
3�c� and 3�d�, where we have chosen to compare directly the
two normal states and the two superconducting states, re-
spectively. The nodal liquid and YRZ agree well at large T,
but deviate significantly for T�0.025t0, with the nodal liquid
curve going to zero. The open red squares are results for the
arc model with �c

ARC chosen to fit the value of 	n
YRZ�T=0�.

This results in a finite DOS at the Fermi level, for both the
YRZ and arc models, which results in excellent agreement

over all temperatures. Similar results for the superconducting
state are presented in Fig. 3�d�. The agreement between YRZ
and the arc model is excellent. Both show some slight devia-
tions from the nodal liquid, but these deviations appear less
important than in the normal pseudogapped state results of
Fig. 3�c� where we find the low-temperature differences to be
quite striking. However, it should be noticed that, in Fig.
3�d�, the nodal liquid result �dotted� does fall below YRZ for
all T�Tc, which results in substantial loss of area under
these curves, indicating a smaller condensation energy of the
superconducting state �shown in Fig. 4�a��. It is clear from
this comparison that placing the pseudogap on the Fermi
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FIG. 3. �Color online� Plots of 	�T� /	0 comparing the supercon-
ducting state �red dashed� to the pseudogapped normal state �solid�,
with the areal displacement shaded: �a� YRZ model and �b� nodal
liquid. The arc model fitted to YRZ for x=0.13 and compared to the
nodal liquid: �c� pseudogapped normal state and �d� the supercon-
ducting state.
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FIG. 4. �Color online� �a� Condensation energy, �U�0� / t0, vs x
for all three models, overlayed with �sc / t0 and �pg / t0 from Fig. 2.
�b� Plot of normalized jump vs x for all three models. Inset shows
�	�Tc� /	0.
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surface, rather than on the AFBZ, while at the same time
cutting it off at �c

ARC reproduces well the YRZ results. For
YRZ, there is no cut off, but rather the Luttinger contours
move away from the gapped AFBZ boundary in the region of
the nodes as is clear in Fig. 2�b�.

Figure 4 provides further comparison of both the nodal
liquid and Fermi arc models with the YRZ results, across the
entire doping range. Figure 4�a� compares the condensation
energy �U vs doping, x. There is excellent agreement be-
tween YRZ and the arc model, while the nodal liquid is
consistently lower. Although the nodal liquid still captures
the large decrease in condensation energy that is caused by
the opening of the pseudogap, it overestimates the effect. The
same remarks apply to Fig. 4�b� where �C /Cn is shown vs x.
In the inset, we show the �	�Tc� /	0 for completeness.

In summary, we have found that the microscopic model of
YRZ, based on the successful resonating valence bond spin
liquid phase,23,24 which includes as its central essential ele-
ment the formation of a pseudogap on the AFBZ in the un-
derdoped region of the cuprate phase diagram, can account
for all of the qualitative characteristics of the observed evo-
lution of the specific heat as a function of doping. We have

also found that an arc model with pseudogap formation on
the Fermi surface itself, but limited to a region around the
antinodal direction resulting in an ungapped arc beyond �c in
the nodal region, can adequately simulate the results ob-
tained in YRZ theory. The basic reason for this fortunate
circumstance is that, in YRZ, the Luttinger surfaces define
pockets in the nodal direction around, but not directly on the
antiferromagnetic Brillouin-zone boundary, which keeps the
electrons in that nodal region from fully sampling the
pseudogap on the AFBZ. We have shown that this effect can
be well approximated by the ungapped Fermi arcs of the arc
model. On the other hand, the nodal liquid idea with
pseudogap over the entire Fermi surface accentuates the
pseudogap effect as compared to YRZ. Nevertheless, such a
model still has merit; because of its great simplicity, it can
give straightforward insight into the qualitative behavior of
the pseudogapped state.
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